A General Framework for Structured Sparsity via Proximal Optimization
نویسندگان
چکیده
We study a generalized framework for structured sparsity. It extends the well known methods of Lasso and Group Lasso by incorporating additional constraints on the variables as part of a convex optimization problem. This framework provides a straightforward way of favouring prescribed sparsity patterns, such as orderings, contiguous regions and overlapping groups, among others. Available optimization methods are limited to specific constraint sets and tend to not scale well with sample size and dimensionality. We propose a first order proximal method, which builds upon results on fixed points and successive approximations. The algorithm can be applied to a general class of conic and norm constraints sets and relies on a proximity operator subproblem which can be computed numerically. Experiments on different regression problems demonstrate state-of-the-art statistical performance, which improves over Lasso, Group Lasso and StructOMP. They also demonstrate the efficiency of the optimization algorithm and its scalability with the size of the problem.
منابع مشابه
An Efficient Proximal Gradient Method for General Structured Sparse Learning
We study the problem of learning high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping-group-lasso penalty, based on `1/`2 mixed-norm, and 2) graph-guided fusion penalty. For both types of ...
متن کاملRepresentative Selection with Structured Sparsity
We propose a novel formulation to find representatives in data samples via learning with structured sparsity. To find representatives with both diversity and representativeness, we formulate the problem as a structurally-regularized learning where the objective function consists of a reconstruction error and three structured regularizers: (1) group sparsity regularizer, (2) diversity regularize...
متن کاملA Smoothing Proximal Gradient Method for General Structured Sparse Regression
We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...
متن کاملSMOOTHING PROXIMAL GRADIENT METHOD FOR GENERAL STRUCTURED SPARSE REGRESSION By
We study the problem of estimating high dimensional regression models regularized by a structured sparsity-inducing penalty that encodes prior structural information on either the input or output variables. We consider two widely adopted types of penalties of this kind as motivating examples: 1) the general overlapping-group-lasso penalty, generalized from the group-lasso penalty; and 2) the gr...
متن کاملSmoothing proximal gradient method for general structured sparse regression
We study the problem of estimating high dimensional regression models regularized by a structured-sparsity-inducing penalty that encodes prior structural information on either input or output sides. We consider two widely adopted types of such penalties as our motivating examples: 1) overlapping-group-lasso penalty, based on the l1/l2 mixed-norm penalty, and 2) graph-guided fusion penalty. For ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012